Unit: mm

Construction

The SFS series features an aluminium block which is separated into two parts, an upper and a lower part. A group of three ball bearings is installed respectively on both ends of this block at an angle equivalent to the lead angle. This friction-drive feed screw allows a fitting adjustment between the block and linear shaft by either loosening or tightening both the coil spring and cap screw corresponding to the acting thrust load.

Precision

Table 158: Adjustment Specs.

Backlach	0.025 or less
Lead Error	± 0.038 or less per revolution

Because of the unit's friction-drive mechanism, the repeat positioning accuracy may change due to a possible slip caused by the variations of the acting thrust load magnitude, the inertia force, the lead size etc. For high-precision positioning accuracy, use the closed-loop control system.

Lubrication

Due to the use of a grease supplied bearing, this series does not require additional oil lubrication, however, rust-prevention oil must be periodically applied on the linear shaft.

Selection

Based on the following conditions, choose the best size unit from the SLS series

1 Thrust Examination	
1) Acting thrust load (F_W) determination (For horizontal movement) $F = \mu W \dots \dots$ (For vertical movement) $F_W = \mu W + W \dots \dots$	
2) Maximum thrust load (F_{max}) determination $F_{max} = F_W + F_{\alpha} \dots \dots$	(9)

3) Choose a proper size corresponding to the above F_{max} value from the F_{α} rated thrust load list on the following page.

Minimum size (determined) (a)

where

F_{W}	:	Acting thrust load	(kgf)
W	:	Total acting radial load	(kgf)

 μ : Guide's friction factor

V : Speed	(m/sec)
-----------	---------

 ΔV : Acceleration-deceleration speed difference

(m/sec)

g : Gravitational acceleration (9.8 m/sec²)

t : Acceleration-deceleration time (sec)

2 Shaft Diameter Examination

1) Temporarily determine the lead value. Then use the following equations to obtain the rotational frequency and the speed.

n = 60 x V/l	(rpm).			.				(11)
--------------	--------	--	--	----------	--	--	--	------

$$V = \ell \times n/60 \text{ (m/sec)} \dots (12)$$

 Shaft diameter determination
Use the Critical Speed ~ Installation Distance graph to determine the shaft diameter d.

Minimum Shaft Diameter (determined) (b)

3 Determine the unit's best suited size based on both (a) and (b).

Driving Torque

1) Load torque (T₁) determination

$$T_1 = F_W \cdot \ell / 2\pi \times 0.9$$
 (kgf·m).....(13)

2) Acceleration torque (T2) determination

3) Total load torque (T) determination

where

where

ΣGD²: Driving shaft-related aggregate GD² (kgf·m²)

: Safety factor $1.2 \sim 1.5$

: Acceleration-deceleration time (sec)

Rated Life

1) Rated life in terms of total number of revolutions

$$L_n = (C/F_{max})^3 \times 10^6$$

(rev)

(16)

2) Service life in hours

$$Lhr = Ln/(60 Xn)$$

(hr)

3) Service life in travel distance

(km)

(18)

(17)

where

C: Basic dynamic load rating (kgf)

(mm)

n: Rotation frequency (rpm)

 $F_{max} = F_W + F_\alpha$ (kgf)

Critical Speed

(Critical Speed) $N_c = \alpha \cdot 1.22 \times 10^7 \times \lambda^2 d/L^2$

(19)

Safety factor = 0.8

λ: Mounting factor

Supported ~ Supported $\lambda = \pi$

Fixed ∼ Supported $\lambda = 3.927$

Fixed ~ Fixed $\lambda = 4.73$

Shaft diameter (mm)

Mounting distance (mm)

Fig. 42, Mounting Distance L (mm)

